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Abstract. We investigate the thermodynamic states occurring in explosion fields from 
condensed explosive charges. These states are often modeled with a Jones-Wilkins-Lee 
(JWL) function. However, the JWL function is not a Fundamental Equation of 
Thermodynamics, and therefore cannot give a complete specification of such states. We 
use the Cheetah code of Fried to study the loci of states of the expanded detonation 
products gases from C-4 charges, and their combustion products air. In the Le Chatelier 
Plane of specific- internal-energy versus temperature, these loci are fit with a Quadratic 
Model function u(T), which has been shown to be valid for T < 3,000 K and p < 1k-bar. 
This model is used to derive a Fundamental Equation u(v,s) for C-4. Given u(v,s), one can 
use Maxwell’s Relations to derive all other thermodynamic functions, such as 
temperature: T(v,s), pressure: p(v,s),  enthalpy: h(v,s), Gibbs free energy: g(v,s) and 
Helmholz free energy: f(v,s); these loci are displayed in figures for C-4. Such complete 
equations of state are needed for numerical simulations of blast waves from explosive 
charges, and their reflections from surfaces.  
 

 
 
Introduction 
 

Here we investigate the thermodynamic states 
occurring in explosion fields from the detonation 
of condensed explosives in air. In typical 
applications, the pressure of expanded detonation 
products gases is modeled by a Jones1-Wilkins2-
Lee3 (JWL) function: 

€ 

pJWL = f (v,sCJ ) ; constants 
in that function are fit to cylinder test data. This 
function provides a specification of pressure as a 
function of specific volume, v, along the expansion 
isentrope (

€ 

s = constant = sCJ ) starting at the 
Chapman-Jouguet (CJ) state. However, the JWL 
function is not a fundamental equation4,5 of 
thermodynamics, and therefore gives an 
incomplete specification of states. For example, 
explosions inherently involve shock reflections 
from surfaces; this changes the entropy of the 
products, and in such situations the JWL function 

provides no information on the products states. In 
addition, most explosives are not oxygen balanced, 
so if hot detonation products mix with air, they 
after-burn, releasing the heat of reaction via a 
turbulent combustion process. This raises the 
temperature of explosion products cloud to the 
adiabatic flame temperature (~3,000K). Again, the 
JWL function provides no information on the 
combustion products states.  

 This conundrum may be overcome by using 
the Cheetah code6 as an equation-of-state module. 
As inputs, one specifies the chemical composition 
of the substance and two thermodynamic 
variables; Cheetah then finds the thermodynamic 
equilibrium (or constrained equilibrium) solution 
by minimizing the Gibbs free energy of the 
system; the output is all thermodynamic variables 
at that state. This approach was used to analyze the 
thermodynamic states from the detonation of a C-4 



 

charge (

€ 

ρ0 = 1.6g /cc ) and the combustion of the 
detonation products with air. 
 
 
History of the JWL Function 

 

The Jones-Wilkins-Lee (JWL) function is an 
empirical Equation of State (EOS) used to describe 
the pressure of expanding detonation products 
gases. It is based on a function proposed first by 
Jones and Miller1 in 1948:  

€ 

pJ (V ,T ) = Ae−R ⋅V −B +C ⋅T   (1) 

where V denotes the volume ratio 

€ 

V = v /v0   and T 
is temperature. And a function suggested by Mark 
Wilkins5 in 1964: 

€ 

pW (V ,E) =
α

VQ +B 1− ω
RV

 

 
 

 

 
 e−R ⋅V +

ωE
V

 (2a) 

along with its corresponding isentrope: 

€ 

ps
W (V ) =

a
VQ +Be−R ⋅V +

C
V ω +1   (2b) 

where

€ 

α = a(Q −1) /(Q −1−ω ) . These functions were 
extended to the following form by Ed Lee6 in 
1968: 

€ 

pJWL (V ,E) = A 1− ω
R1 ⋅V

 

 
 

 

 
 e−R1 ⋅V

+B 1− ω
R2 ⋅V

 

 
 

 

 
 e−R2 ⋅V +

ωE
V

 
(3a) 

along with its corresponding isentrope: 

€ 

ps
JWL (V ) = Ae−R1 ⋅V +Be−R2 ⋅V C

V ω +1   (3b) 

Lee and co-workers established the JWL 
parameters (

€ 

A,B,C ,R1,R2 and ω ) for a number of 
explosives by fitting the function to experimental 
C-J conditions, calorimetric data, and cylinder 
expansion data3,7,8,9.  
 

Lee and Tarver10 have developed an ignition 
and growth model for numerical simulations of 
shock initiation of heterogeneous explosives; it is 
based on the JWL function (3) and single pressure-
dependent reaction rate equation. Clark Souers has 

added additional rate equations to model more 
complex problems, such as detonation corner 
turning11,12,13; often times this extension is called 
the JWL++ model. The latest version of Souers 
multi-reaction-rate model is now called 
Tarantula/JWL++14. Recently, Carpenter15 and 
Tarver16 have questioned the adequacy of JWL++ 
models to correctly simulate the energy release 
mechanism in non-ideal explosives. Here we 
assess the adequacy of the JWL representation of 
reactive flow modeling from a Thermodynamic 
perspective. To assist in this, Fundamental 
Equations of Thermodynamics are derived in 
Appendix A. 
 
 
Pressure-Volume Plane 
 

Figure 1 depicts the locus of states of the C-4 
detonation products in the pressure-specific 
volume plane. The locus starts at the Chapman-
Jouguet (CJ) state, and expands down the 
isentrope (

€ 

sCJ = 1.768 cal /g − K ) to atmospheric 
pressure. The locus was fit with the following 
JWL function: 

€ 

pPG
JWL (v,T ) = A 1− ω ⋅ v0

R1 ⋅ v

 

 
 

 

 
 e−R1 ⋅v / v0 +

      B 1− ω ⋅ v0
R2 ⋅ v

 

 
 

 

 
 e−R2 ⋅v / v0 + RDPT /v

 (4) 

where A = 5.23 Mbar, B = 0.154 Mbar, 

€ 

R1 = 4.30 , 

€ 

R2 = 1.70 and 

€ 

RDP = 3.12  (bar-cc/g-K). Note that 
for specific volumes larger than ~10 cc/g, the 
function reduces to the perfect gas law. 



 

100

101

102

103

104

105

p 
(a

tm
)

0.1 1 10 100 1000

v (cc/g)

CJ

 CJ isentrope (S=1.77 cal/g-K)
 JWL fit

 
Fig. 1. Pressure-volume diagram depicts the locus 
of states of the detonation products gases as they 
expand down the CJ isentrope for a C4 charge. 
Locus is fit with the JWL function (4). 

 
 
Le Chatelier Plane 
 

Figure 2 presents the same locus in the specific 
internal energy—temperature plane. Points (red 
circles) were calculated by the Cheetah code, 
assuming that the composition of detonation 
products was frozen17 for T<1,800 K. The solution 
starts at the CJ point (

€ 

TCJ = 3,238 K ) and expands 
down the isentrope (

€ 

sCJ = 1.768  cal/g-K) to room 
temperature. The standard energy of C-4 Reactants 
and Products at stp (1 atm, 298K) are: 

€ 

uF,R
0 =  

73.114 and 

€ 

uF,P
0 =  -1,173.68 cal/g, respectively; 

their difference is the heat of detonation: 

€ 

uF,P
0 − uF ,R

0 ≡ ΔHd = -1,248 cal/g, and is indicated 
on the figure. Also shown in that figure is the 
equilibrium isentrope (blue curve), which assumes 
chemical equilibrium at all temperatures. At room 
temperature, it results in energy of -1,350 cal/g 
which disagrees with the measured heat of 
detonation. This effect is typical of condensed 
explosives; quenching induced by the strong 
rarefaction created when the DP gases expand 
from the CJ state stops the kinetic reactions17 at 
~1,800 K. A Constant-Volume Detonation (CVD) 

is represented by the 

€ 

u = uF,R
0  line from R to P. It 

gives a CVD detonation temperature of 2,887 K. 
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Fig. 2. Le Chatelier diagram depicting the locus of 
states of the detonation products of the explosive 
C-4, starting at the Chapman-Jouguet point (CJ) 
and expanding at constant entropy to one 
atmosphere.  

 

 
Fig. 3. Le Chatelier diagram depicting the locus of 
states for the detonation of a C-4 charge (curve F) 
and its stoichiometric combustion with air (curve 
CP). Also shown are loci of the reactants (curve R) 
and air (curve A). 
 

Fig. 3 depicts the locus of states for the 
equilibrium products CP for the stoichiometric 
combustion of C-4 in air (

€ 

σ s= 2.1). The red line 
represents isobaric (p = 1 atm) combustion locus. 
The standard energy of C4-air Reactants and 



 

Products at stp are: 

€ 

uCP,R
0 =  +9.677 cal/g and 

€ 

uCP,P
0 = -1,016.77 cal/g, respectively; their 

difference is the heat of combustion: 

€ 

uCP,P
0 − uCP,R

0 ≡ ΔHc =-929.04 

€ 

cal /gm  = -2,880 
cal/gC4, which is indicated on the figure. Adiabatic 
Combustion (AC) is represented by the 

€ 

u = uCP,R
0  

line from R to P. It gives an adiabatic combustion 
temperature of 2,816 K. For temperatures below 
3,000 K, these curves are only a function of 
temperature.  
 
 
Quadratic Model 
 

Therefore the loci of states in Fig. 3 were fit 
with quadratic functions of temperature18: 

€ 

uk (T ) = akT
2 + bkT + ck    (5) 

for k=F, A, R, CP . The fitting constants: ak, bk, ck 
are listed in Appendix B. This function then serves 
as caloric EOS for the detonation products and 
their combustion products with air. 

 
In hydro codes, one typically carries the 

density (

€ 

ρk = 1/vk ) and specific internal energy 
(

€ 

uk ) as independent variables. For pure cells, 
given , the above relation may be inverted to 
determine the temperature: 

€ 

Tk = [−bk + bk
2 − 4ak (ck = uk ) ] / 2ak  (6) 

Then pressure is calculated from the perfect gas 
relation: 

€ 

p = RT /v     (7) 

We have shown18 that the above relation is valid 
for pressures less than one kilo-bar. 

 

For computational cells containing a mixture 
of components, the mixture energy also satisfies a 
quadratic form: 

€ 

um (T ) = Ycucc
∑ = amTm

2 + bmTm + cm  (8) 

where the mixture coefficients are defined by the 
mass-weighted sums: 

€ 

am = Ycacc
∑   &  

€ 

bm = Ycbcc
∑              (9, 10) 

€ 

cm = Ycccc
∑   &  

€ 

Rm = YcRcc
∑            (11, 12) 

Given the mixture specific internal energy, 

€ 

um , 
the mixture temperature can be evaluated by 
solving (8) for 

€ 

Tm  yielding: 

€ 

Tm = [−bm + bm
2 − 4am (cm − um ) ] / 2am  (13) 

 
 
Fundamental Equation 
 

The above relations were used to derive the 
Fundamental Equation for the detonation products 
and combustion products: 

€ 

u(s,v) = aT*
2e2s / cv (v* /v)

2R / cv +

bT*e
s / cv (v* /v)

R / cv + c
  (14) 

where 

€ 

T* and v*  represent the temperature and 
specific volume in the reference state denoted by 
subscript *. This function is displayed in Fig. 4. 
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Fig. 4. The Fundamental Equation u(v,s) for C-4 
detonation products. 
 

The specific internal energy for C4 detonation 
products is displayed as a function of temperature 
in Fig. 5. Below 2,200 K, the products behave as a 
perfect gas, and u is solely a function of 
temperature; at higher temperatures it is a function 
of both temperature and entropy. 
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Fig. 5. Specific internal energy function u(T,s) for 
C-4 detonation products. 

Given an analytic form of fundamental 
equation: 

€ 

u(s,v)  one can use Maxwell’s 
reciprocity relations4,5 to evaluate the 
corresponding temperature, T, pressure, p, and 
enthalpy, h, Gibbs free energy, g, and Helmholz 
free energy, f:  

€ 

T (s,v) ≡ ∂u
∂s
 

 
 

 

 
 
v

    (15) 

€ 

p(s,v) ≡ − ∂u
∂v
 

 
 

 

 
 
s
    (16) 

€ 

h(s,v) ≡ u(s,v) + p(s,v)v    (17) 

€ 

g(v,s) = h(v,s)−Ts    (18) 

€ 

f (v,s) = u(v,s)−Ts    (19) 

These functions are displayed in Figs. 6-10 for C4 
detonation products in terms of v and s. 
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Figure 6. Temperature function T(v,s) for C-4 
detonation products. 
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Figure 7. Pressure function p(v,s) for C-4 
detonation products. 

 
Figure 8. Specific enthalpy function h(v,s) for C-4 
detonation products. 
 

 
Figure 9. Specific Gibbs free energy function 
g(v,s) for C4. 
 



 

 
Figure 10. Specific Helmholz free energy function 
f(v,s) for C4 detonation products. 
 
 
Conclusions  
 

Blast waves from explosives charges typically 
involve reflections from nearby surfaces, which 
changes the entropy of the products. Also, mixing 
of the products with air leads to combustion, 
which raises the products cloud temperature to 
around 3,000 K. To capture these physical 
processes in numerical simulations, one needs a 
complete EOS. This can be provided by using the 
Cheetah code as an EOS subroutine, or by using 
the analytic specification of such loci by the 
Fundamental Equation presented here. 
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Appendix A: Fundamental Equations 
 

Here we describe the concept of fundamental 
equations in thermodynamicsa. We start with the 
First Law of thermodynamics for a pure single-
phase substance: 

1st Law: 

€ 

du = dQ0 + dW 0   (A1) 

which says that the specific internal energy of a 
substance du may be changed by heat input: 

€ 

dQ0 
and work: 

€ 

dW 0 = −pdv . According to the first 
part of the Second Law of thermodynamics, the 
heat input may be expressed as 

€ 

dQ0 =Tds  along a 
reversible path (denoted by superscript 0). 
Inserting these relations into (A1) yields: 

1st & 2nd Laws: 

€ 

du =Tds− pdv   (A2) 

___________________ 
a This exposition relies heavily on Chapter 12 of Joseph 
Kestin’s book: A Course in Thermodynamics4 and 
Herbert Callen’s book: Thermodynamics5. 

Now du is a perfect differential (a Pfaffian form), 
so the above relation implies that u must be a 
function of specific entropy, s, and specific 
volume, v, that is  

€ 

u = u(s,v)     (A3) 

Its total differential may be expressed as: 

€ 

du =
∂u
∂s
 

 
 

 

 
 
v
ds+

∂u
∂v
 

 
 

 

 
 
s
dv    (A4) 

Assuming that the specific internal energy function 

€ 

u (s,v)  is both a C 3 (differentiable) function and 
obeys the First and Second Laws of 
thermodynamics, then comparison of (A2) and 
(A4) shows that there must be a relation between 
the derivatives of internal energy and the 
thermodynamic variables of temperature and 
pressure: 

€ 

T (s,v) =
∂u
∂s
 

 
 

 

 
 
v

    (A5) 

€ 

p(s,v) = −
∂u
∂v
 

 
 

 

 
 
s
    (A6) 

These are known as reciprocity relations, first 
discovered by James Clerk Maxwell in 1864. 
Given 

€ 

u = u(s,v) , one could evaluate the 
temperature 

€ 

T (s,v)  form (A5) and pressure 

€ 

p(s,v)  from (A6), and then eliminate entropy 
between them to find the thermal equation of state: 

€ 

F (p,v,T ) = 0     (A7) 

One could also calculate the enthalpy of the 
substance and its specific heat: 

€ 

h(s,v) = u(s,v) + p(s,v)v    (A8) 

€ 

cv (s,v) ≡
∂u
∂T
 

 
 

 

 
 
v

=
∂u
∂s
 

 
 

 

 
 
v
/ ∂T
∂s
 

 
 

 

 
 
v
  (A9) 

Thus, if the function 

€ 

u = u(s,v)  is known, one can 
calculate all thermodynamic variables of a system: 

€ 

p,T , h, cv , etc. In recognition of this property, 

€ 

u = u(s,v)  is known a fundamental equation in 
thermodynamics; it is a function of its canonical 
variables s and v. For a perfect gas, it acquires the 
form: 



 

€ 

u(s,v) = cvT
* v*

v

 

 
 

 

 
 

R / cv

es / cv −1
 
 
 

  

 
 
 

  
  (A10) 

which may be derived from the perfect gas 
relations: 

€ 

u = cv (T −T
*)     (A11) 

€ 

s = cv ln
T
T *

v
v*
 

 
 

 

 
 
R / cv

   (A12) 

by elimination of the temperature.  
One can prove that there exist three additional 

fundamental equations, each utilizing its own 
particular canonical variables:  

specific enthalpy: 

€ 

h(p,s) = u(s,v) + p(s,v)v    (A13) 

Helmholz free energy:  

€ 

f (v,T ) = u(s,v) −Ts    (A14) 

Gibbs free energy: 

€ 

g(p,T ) = h(p,s) −Ts    (A15) 

The Mollier diagram 

€ 

h = h(p,s)  is a graphical 
representation of a fundamental equation locus in 
thermodynamic space. Comparison of (1) with 
(A3) and (A13)-(A15) proves that the JWL 
function is not a fundamental equation, and 
therefore cannot give a complete specification of 
thermodynamic states. 
 
 
 

 
 
Appendix B: Fitting Constants for the Quadratic Model 

Table B1. Piecewise quadratic fits: 

€ 

uF = aiT
2 + biT + ci  of the CJ isentrope of C-4 detonation products 

REGION i 

€ 

ai  

€ 

bi 

€ 

ci  
1:     

€ 

300K <T < 2,340K  11.309 x 10-5 0.085576 -1,199.7 
2:  

€ 

2,340K <T < 3,700K  82.435 x 10-5 -3.6012 3,570.1 
3:  

€ 

3,700K <T < 4,150K  182.47 x 10-5 -7.787 5,328.8 
4: 

€ 

4,150K <T < 4,900* 210.03 x 10-5 -12.849 21,607 
* u exists only for 

€ 

T < 4,900K  
 
Table B2. Piecewise quadratic fits: 

€ 

uP = aiT
2 + biT + ci  for isobaric combustion of C-4 detonation products 

in air (

€ 

σ s = 2) 

REGION i 

€ 

ai  

€ 

bi 

€ 

ci  
1:     

€ 

300K <T < 2,340K  4.6 x 10-5  0.14816 -962.62 
2: 

€ 

2,340K <T < 3,700K  62. 137 x 10-5 -2.4658 2,026.7 
3: 

€ 

3,700K <T < 4,150K  -111.68 x 10-5 9.9347 -20,080 
4: 

€ 

4,150K <T < 4,350  -36.05 x 10-5 3.7283 -7,345.4 
5: 

€ 

4,350K <T < 6,000K  40.904 x 10-5 -3.4458 9,386 
MCP = 27.5 at T = 2,800 K 
 
 
 


